コンテナの重心の計算と測定法
海運関係の仕事についている知人から相談を受けた。コンテナに貨物を積み込んだときに、重心がどこになるかを計算で求めたいと言う。コンテナを高く積んだ貨物船が沖を通るのを何度か見たことがある。重心が偏っていると、船が傾いて転覆する恐れがあるので、これは重要な問題である。会社で使っている計算ソフトではコンテナの重量を加味していないので、明らかに間違いがあると言った。説明を聞いて、すぐにその指摘は正しいと分かった。そこで、簡単にモデル化して計算した結果を渡していた。高校 (中学)の物理の問題としても、初歩的なものである。その後、もっと簡単に答えが出せることに気がついた。ここでは、そのいきさつと、計算で求めた重心位置を、測定で検証する方法を説明する。図を描くのは煩わしいので、言葉と数式のみを用いることにする。
立方体であるコンテナを、重さが同じの細長い板で近似する。幅は狭いので、長手方向のみを考え、1次元の問題に簡略化する。この板の一方の端(左側)の位置を原点とする座標 xを考える。板の重さをw1、長さをLとする。この板の上に、合計で N-1個の貨物を置くものとする。それぞれの貨物の重さと、重心位置 (板の上の) を、wnとxn (n =2, 3,・・N) とする。
求めるべき全体の重心位置を xcと表す。重心位置でコンテナ全体を支えると、左右が釣り合う。物理的には左右のモーメントが同じになると表現される。
先に求めた計算法は、板を重心の右と左に分けて考え 、右側の重心xR=(L- xc) /2と、左側の重心xL= xc /2として、モーメントの釣り合いを計算していた。やってみると、途中で2次式が現れるので戸惑う。しかし、2次の部分は打ち消す結果になるので安心する。結果を示せば、
xc=(w1L/2+w2x2, ・・+ wNxN)/ (w1+w2, ・・+ wN)
となる。全体の重さを W= w1+w2, ・・+ wN とおけば、
xc=r1L/2+r2x2, ・・+ rNxN
となる。ここで、rn= wn/Wとおいた。上の結果は位置の重み付加算となっている。この事実を考えていると、モーメントの釣り合いを表した式 (ここでは示していない) において、どの貨物を重心の右と左に分けるかは問題としないで良いことに気づいた。板を、重さw1で、その重心位置がL/2の貨物と考え、板の代わりは、重さがない仮想の支持体を考える。これより次のような、モーメントの釣り合いを示す簡単な式が得られる。
w1(xc -L/2) + w2(xc - x2) + w3(xc – x3) ,・・+ wN(xc – xN) = 0
これを解くと先に求めた結果が得られる。
次には、重心位置の測定法を考える。貨物を含めた全体の質量を先と同じようにWとする。コンテナの右端 (x=L)をつかんで、少しだけ持ち上げる。このときの力 (重さ) をWRとする。地面となす角度が小さいので、これを無視する。モーメントの釣り合いより、次式を得る。
W xc = WRL
これより、xc = (WR/ W) L と求まる。
この方法では、全体の重量を知る必要がある。そこで、さらに次のような測定を行う。今度はコンテナの左端を少し持ち上げ、その力をWLとする。このとき次式を得る。
W(L- xc ) = WLL
これと先ほどの関係式を使って、
xc= L WR / (WR + WL)
と求まる。
コメント
コメントを投稿